Fusion Based Holistic Road Scene Understanding

نویسندگان

  • Wenqi Huang
  • Xiaojin Gong
چکیده

This paper addresses the problem of holistic road scene understanding based on the integration of visual and range data. To achieve the grand goal, we propose an approach that jointly tackles object-level image segmentation and semantic region labeling within a conditional random field (CRF) framework. Specifically, we first generate semantic object hypotheses by clustering 3D points, learning their prior appearance models, and using a deep learning method for reasoning their semantic categories. The learned priors, together with spatial and geometric contexts, are incorporated in CRF. With this formulation, visual and range data are fused thoroughly, and moreover, the coupled segmentation and semantic labeling problem can be inferred via Graph Cuts. Our approach is validated on the challenging KITTI dataset that contains diverse complicated road scenarios. Both quantitative and qualitative evaluations demonstrate its effectiveness.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Road Scene Segmentation from a Single Image

Road scene segmentation is important in computer vision for different applications such as autonomous driving and pedestrian detection. Recovering the 3D structure of road scenes provides relevant contextual information to improve their understanding. In this paper, we use a convolutional neural network based algorithm to learn features from noisy labels to recover the 3D scene layout of a road...

متن کامل

Automatic Road Extraction by Fusion of Multiple Sar Views

In the last years a system for automatic road extraction from SAR images based on line extraction and explicitly modeled knowledge has been developed at the Technische Universitaet Muenchen (TUM). In this paper, this approach is extended towards the use of multiple views from different viewing directions. The visibility of roads in SAR images is often limited by neighboring tree or building row...

متن کامل

Human-Machine CRFs for Identifying Bottlenecks in Holistic Scene Understanding

Recent trends in image understanding have pushed for holistic scene understanding models that jointly reason about various tasks such as object detection, scene recognition, shape analysis, contextual reasoning, and local appearance based classifiers. In this work, we are interested in understanding the roles of these different tasks in improved scene understanding, in particular semantic segme...

متن کامل

Real-time data fusion on stabilizing camera pose estimation output for vision-based road navigation

This paper presents a novel framework of vision-based road navigation system, which superimposes virtual 3D navigation indicators and traffic signs onto the real road scene in an Augmented Reality (AR) space. To properly align objects in the real and virtual world, it is essential to keep tracking camera’s exact 3D position and orientation, which is well known as the Registration Problem. Tradi...

متن کامل

Image Holistic Scene Understanding Based on Global Contextual Features and Bayesian Topic Model

Image holistic scene understanding based on global contextual features and Bayesian topic model is proposed. The model integrates three basic subtasks: the scene classification, image annotation and semantic segmentation. The model takes full advantage of global feature information in two aspects. On the one side, the performance of image scene classification and image annotation are boosted by...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1406.7525  شماره 

صفحات  -

تاریخ انتشار 2014